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NONAXISYMMETRIC EQ UiLiERIUM MODES
SHALLOW SPHERICAL SHELL®

V. V. LARCHENKO
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~ne stabllity X a thin, eslastic, spherical shell with absolutel +Y LlXed SUpport con-
tour loaded by & uniform external pressure is examined within the framework of pert-
urbation theory in the Koiter-— Fitch form /1,2/. The state of stress and strain,
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the stability, and the bifurcation of the equilibrium modes for which the Lifting
capacity of the shell is not exhausted are investigated.

The analysis is limited to pressures of the form
o (r = 8y (- p

Here 4 is a small numerical parameter, (- is a function of the polar radius r that charact-
erizes the presgure digtribution over the shell meridian, and p is a scalar parameter on the
order of one, where among its numerical values a sequence of eigenvalues of the appropriate
nonlinear boundary value problem linearized in the neighborhood of the axisymmetric solution
is considered.

As is known, substantial discrepancies are observed between the upper critical pressures
obtained according to a geometrically nonlinear theorxy and the data of precision experiments.
The critical pressures determined experimentally are, as a rule, below the first eigenvalue
{in absolute value}. The lower critical pressures are obtained because of geometric imperfec-
tions in the middle surface, the formation of domains in the shell in which physically non-
linear phenomena are essential, the influence of a "wall-thickness-variation® factor, etc.

Data {see /3—7/, say) are alsoc known that show that the critical pressures can exceed
the corresponding results of theoretical investigations., Such results are obtained if the
loading is quasistatic, the deviations in the radius of curvature do not exceed 0.01l% at
separate points of the shell surface, and variations in the shell thickness do not exceed 1.5%.

It should be noted that there are significant discrepancies between the data of precision
experiments of different authors. Firstly, a spread in the critical pressures is obsexrved,
that reaches 20% in a number of cases. Secondly, some researchers observed nonaxisymmetric

buckl {nm modes under loading 73,4,7/, and others only azigvemetric modes Y Thase and anzalo-
unger F3¢4 7 s 8NnQ CLhers ONLY axisymmeixic moddes /&/., Taese ang analio

gous experxments permitted the advancement of several hypotheses.

lo. Since the critical pressures corresponding to shell snap are determined during the
experiments /3,4/, then a disagreement between the first eigemnvalue p* and the pressure p° at
which snap occurs, probably holds, i.e., nonaxisymmetric equilibrium modes branch off in the
neighborhood of the bifurcation point p*, but the lifting capacity of the shell is not exhau~
sted /8/. In this case the shell can perceive a pressure exceeding the first sigenvalue. How-
ever, it is shown in /9/ that p°=p* holds in the problem under study for those values of the
geometrj¢ parameters at which nonaxisymmetric bifurcation is possible.

20. According to /10,11/, only axisymmetric solutions branch off in the neighborhood of
the bifurcation points (**), In this case, the critical pressures in the precision experiments
should agree with the corresponding branch points of the boundary value problem of nonlinear
shell theory in an axisymmetric formulation, and their existing defects are reduced somewhat
under real conditions. A$ a rule the results of /11/ are used for a foundation of this view-
point.

It is shown below that the stability of a thin shell is regpongive to the form of the
function n(». For a given fixing of the support contour, the shell buckles in a snapping
mode for some kinds of functions n =1, (n , bifurcation is observed for other kinds % = n, (),
but the shell carrying capacity is not exhausted. A function n= () is determined for which
branching off of the nonaxisymmetric modes from the axisymmetric solution occurs without snap-
ping for all the nonaxisymmetric bifurcation points. Under real conditions the distribution
of the perturbing pressure depends on the structural features of the experimental apparatus,
the loading method, etc. One of the reasons for the discrepancy in experimental data can

*pPrikl.Matemn.Mekhan.,b44,No.6,1076-1086,1980

*%)} Pogorelov, A.V., On spherical shell buckling modes. Dokl. Vses. Konf. po Teorii Gbholochek
i Plastin (Report to All-Union Conf. on Theory of Plates and Shells), Rostov-on-Don, 1971.
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Asymptotic analysis of nonaxisymmetric equilibrium modes 769

therefore be the fact that different critical pressures, corresponding to different buckling
modes, are realized in experimental investigations.

1. Formulation of the problem. The equilibrium and strain compatibility equations
of the geometrically nonlinear theory of a shallow, elastic, spherical shell whose middle
surface is identified with a plane, have the following form in dimensionless variables

pAlw = L (w, @) + 0AD 4 o (r)y 32D =— Y,L (w, w) — 6Aw, p=h/ay <1 (1.1)
Lw®=w (@ /r+ )+ W/ r+uw /?=2@ /r—0") W/ /r—w)/r
(Y =8/69, () =08/0r. y* =121 —~~?

Here wis the normal dispalcement, @ is the Airy stress function, p (r) is the external
pressure, h is the shell thickness, ¢ is the planform radius, v is the Poisson's ratio, 0 =
a /R is half the shell aperture, R is the radius of curvature, and (g, r) are the polar co-

ordinates.
The dimensionless quantities in (l1.l) are related to the dimensional quantities marked
with the subscript d by means of the formulas (£ is Young's modulus):

pd (ra) = ER?p (r)/ (a*y), @q = Eha® /vy, wyg = aw, ry = ar
We supplement the system (l.l1) by the boundary conditions
a)r=1, w=w =0, O —v (@ +O) =0 (L.2)

Q= (P =P QY 20+ 214+ VN)@D + D)+ VO~ D - D" =0

b)r=1, v=uw =0, O 4+ =0" — D =0
Conditions a) and b} correspond to rigid clamping of the support contour and sliding clamping.
The energy functional of an elastic shallow spherical shell has the form

2 1

= -%— S d(pS[ore, + Og8o + 20 &re-+ M X + Mgltg + 2MoXrol rdr (1.3)
0 o

e, = u’ + 6rw’ + VY, (W), % =—u0"

Teg = U+ uy" + Y, (W)/r, rig=—w —uw"/r

2repg = Uy 4 ruy’ — uy + O A+ WW, Y = —(w' /1Y
ro, =0 4+ Q" /r, o=@, 1= /r— "
&r = p (0, — vog), & = B (0p — V¥O:), Erp = p (1 + V)org

Here {u,, u,} are tangential displacements, and M,, Mg, M,; are radial, circumferential, and
twisting moments.

2. Method of solution. Let us assume that in the continuation of the solution in the
pressure density parameter §, the vector of the solution V = {w, ®} and § can be expanded
in series in integer powers of t in the neighborhood of the branchpoint

d - (2.1)
Vi, e 8)=Vo(r, 8 + Jt"Va(r, 9), 8=3 t,
=1 =]
where the representation (2.1) is valid at least in the asymptotic sense as 0. Here

Vo'(r, 8) is the axisymmetric mode from which the solutions branch off and contain small non-
axisymmetric terms "V,. For each of the boundary conditions (1.2), the vector-function {wq,
®,} is defined by the relationship

V, (rs ,S) = {Sﬂ(t, ﬁ)dt. §‘P(tv 6)dt}

Here ({f,¢} satisfies the nonlinear boundary value problems for the ordinary differential eg-
uations

PAB=r0y + By + (o) td, pdp = —rop — v,p2 (2.2)
L)

B(0)=0, ¥(0)=0, A,()=r?d-r-[—:-dirr( )]

a)r=1,ﬁ=¢'—v¢=0; b)r.——_l, ﬁz\‘;:o
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Substituting the expansion (2.1) into (1.1) and the boundary conditions (1.2), and then
sequentially retaining terms of the first and second degree in &, we obtain boundary value
problems to determine V, and V.. Expanding V, into a Fourier series and making the change
of variable V,,,(r) ==r"Z,(r) in each coefficient of the Fourier series for V,,,, we cbtain
that Z, (r) = {Wa, Fa} will be eigenvector-functions of the spectral problems

BALEW, =T, A Fy + I Wa, pAgiF, = =T W, (2.3)
Z,* =0, r=0, k=1,3

ajr=1, W = W, = (e 4+ QM F, = MyF, =0

bYyr=1, Z, =2, =0

A= (Y 4+ 2n4+1)Y/r TN = QA _ /T L A.n

--n N7 L St 27 ’ < r Vian T P dap T Per

P =ve" +VE", er*=)+2n/r+@—n)/rl/r
Er=(n—-n)/r*+()/r, ov=vin(n—1)— ()}
M=) +3()V+@=1DA=¥)~3n+nl—n)

1+ )
I Wylle =p, n=2,3,...,N

The pressure on the shell outer surface p, which enters implicitly into (2.3) in terms
of the components of the vector function {B,y} is the spectral parameter in eigenvalue prob-
lems.

Let us substitute (2.1) into (l.1l) and (1.2) and require that the residual be on the
order of O (8%, a>2, as -0 in satisfying the equations and boundary conditions. We
hence obtain inhomogeneous partial differential boundary value problems for V,. Analysis
of these latter shows that if p & {p,}), where p. is an eigenvalue of the problem (2,3),then

== Wnjr elger

V, for each n is representable in the form

Van(r, @) =rGy(r)cos2ng + [ Ha(dt, G () ={r(n ) 0 (D}, Ha() ={g(n 1), (2 n}

wharae fr o) fo £1 ia +ha anlnutinn of tha fallawine haundave valua nrshlams
wiaere v, Wy, £, 7/¢ i1s Uae sS0LUTion Or tihe I0Li0owWing OSunGary vaiue proo.iems
pA = T0 + D0 + o, pldgie = =Tt 4+ . G®(0) =0, k=1.3 (2.4)
) - 4 - 7 \ ¢y \ Py N B any ; \ Y a ~ ~ s ~
gr=1, ta,rn=tvhnNn=MYe@n ="+ o0 #H=0D0 r=1, G, =G, =90
uAd g = Qrf + Bf +we - Q, ud.f= —0Br L8+ 5. (0 =Ff{0) =0 (2.5)
[ aakate 1 ST P TTYE T osa L P8 T e, §AY) HY) ., Ve

a r=1’ g=fl—vf=0v b)r=1y Hn=0
@ = 1-/i {lr-’ [F'—.Wn” - F:‘.W.’:,"-l - Wn (Fn'r-l - F,n”)] +
dnrotW,'F,' + rt (W, F, + F."W,. ) + n*roF, W,

L= —r2 (W, Y?n (1 +n/2) 4 IW (W," —r'W,)/2 +rW, W,/ 2i

Q = i (WP, + LIF W, + WoFa'l/ 1 + 20 FaWa} /2

S = —rn 2nlr W, 2 + (W, + 20"\ W,'Wyo} /4, n=23...N, l=n—nt

Therefore, the problem (1.1}, (1.2) formulated is reduced to a recurrent sequence for

each of the boundary conditions a) and b), consisting of the boundary value problems 1) for

PEC YRS I SRR I SURUGPI P - P EIPS Ty e (DY ) Lo admamerslita musahlame (2 3) and )
tile nonliinear Ordinary GlrIlierentldl &guacilns (c.<) 2) the eigenvasus prosiems (.5, ana 3)

for the systems of linear inhomogeneous equations (2.4) and (2.5) in which the solution of the
problem (2.2) enters into the coefficients and the eigenvector-function {Wha, F,} into thein-

nomogeneous parts «,{,Q, §.
Remarks. lo. The solutions Gy, (r), Ha () are known to the accuracy of a constant that is
determined by the Liapunov—Schmidt method.

20. Let E, be the Hilbert space of the two-dimensional vector functions z = (I, Tg)e
y = (y1, ¥2), - . . With the scalar product

b4 1
g, = S ap S (x1yy + z2y,) rdr
] /]

The scalar product «V,,Vj» equals zero for /> 2 Therefore, the expression

t= V¥V, Vp/ Vi, V)
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can be a formal definition of the small parameter .
Let us investigate the power series (2.1) for b under certain constraints. Let the shell

be subjected to the pressure

p(r) =p+8n(r)
where p is the uniform external pressure equal to one of the eigenvalues (2.3), and 7n(r) is
a sufficiently smooth function satisfying the condition

0<|§g(r)[§tn(t)dt]drl<oo

Let o,¢ U, be, respectively, the generalized stress, strain, and displacement, and let
L, and L, be linear and quadratic differential operators in U. Then within the framework
of the geometrically nonlinear theory in a "quadratic" approximation, the function & and its
variation 8¢ take the form
e =L, (U) + 'L, (U), 8e =L, BU) + L, (T, §U) (2.6)

Here L, is a bilinear differential operator. Let us expand U in a series analogous to (2.1).
From (2.6) we have
e =g+ EIL (Uy) + Ly (Ug, Ui+ 8 1Ly (Uy) + Ly (Coy Un)+ VaolLy (Uy)] + B [Ly (Ug) + Ly (U, Uy) + (2.7

Ly (U U + ... 1+ 0 (&), Se=beo+ 3 8 Lu(Uy, 8U)+ O (k)

We convert (2.7) by replacing U, (p + 6y) by a segment of its Taylor series in the neigh~
borhood of the point p & {p,}. We then obtain
e =gy -+ ke, + Eey + B + O (B (2.8)
eo = Ly (Ug) + Yoly (Uy), & = Ly (U)) + Ly; (Uy, Uy)
g, = L, (Uy) + 8,1y, (nUi(il.)m U + Ly (Uy, Uy} + YL, (Uy)
&5 = Ly (Ug) + 8:Lyy (UGS, Uy + :8.2Ly (P05, Uy) +
8Ly (nUé‘.’p, U,) + Ly; (Uy, Uy) + Ly (Uy, Uy)
Here (), k = 1,2 are Fréchet derivatives of order k with respect to p,

Let us assume that the equilibrium of the generalized stress ¢ and the pressure p is
assured by the condition

{ odeds = { psUds (2.9)
5 5
Here § is the shell middle surface. Then by using the Hooke's law o; = Te;, i =0,...3, the
kinematic and static relationships from (1.3) and (2.7)= (2.9), we group the terms for t*,
n=20,...3 sequentially in (2.9). We obtain a variational formulation of the problems (2.2)

and (2.3) in a zero-th and first approximation. Weexpand ¢, and U, in a Taylor series in
powers of v (r)d. We replace §U by U,, and taking into account that

§01(~:jds=s ojelds, Lu(Uj, Uj)=L2(Uj)1 ]=11 2r3
&
we find condition (2.9) in the asymptotic form

2 A =0 (2.10)

N==2

A= {8181+ 0 [ - La (U + Ly (Un) + L (U, U] + 0ola (Us, Uph s
k3

As= {182B1 4 04 [Lyy (U, Us) + Ly (Us) + Ly (U, Us)] + oLz (Us, Us) -+ 05z (Uy) ds
8

By = 66,0 0Ly (Uy) + 20,Ly, (U,, nU;, o)

Equating the coefficients of %? and &® to zero in (2.10) and using the variational formula~-
tion of the eigenvalue problem, we determine the first two terms of the expansion (2.1) for
§ in the form
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8, =0, 8, — J/J,, .?—_—S{jswgﬁ_i__;_rmﬁ{ar-——?;m}}dr, J1=§{g{r}§£r§{‘£}d:}dr {2.11)
k1] 2 @

The expression for J, has been found here by using identity transformations of the problem
(2.5) and the problem obtained by differentiating the equations and boundary conditions in
(2.2} with respect to the parameter 3.

=t

It foilows from {2.11} that three cases are possible for a § -neighborhood of the bifurc-
ation point p

a) G, > In this case the nonaxisymmetric solution exists for &> 0, i.e., the shell
is able to sustain the pressure p >p*, and the nonaxisymmetric equi.libnum mode can, if it is
energetically suitable, bhe observed in the static state.

b) 8;«0. BRifurcation of the nonaxisymmetric mode is accompanied by snapping and it is
impossible to observe the mode branching off in a static formulation.

c} 8, =0. To analyze buckling, the last terms in the series (2.1} for § must be taken
inte account.

It follows from {2.11) that only the solution of the problems {2.3}— (2.5} enters explic-
itly into J , while J; depends algo on 71 (r), i.e., on the loading method, the structural
features of the apparatus being used, etc. If g (r) is a sign-variable function, then the sign
of 8,» meaning also the buckling mode, depends on the distribution of a small perturbing
pressure 8n (r) over the shell opening in the neighborhood of p*

3°. For numerical integraticon, the boundary value problem (2.2} was reduced ¢to two
Cauchy problems (s={f (. ¥ {9}

1) res (0, Yy), va” = f (v, v4y 1, 8, 4, P)y r = 0 =0, v = {8y, 5
2 rea (M, 1), v7 = f ey va m B, )
a) re L vl = {0, ), 2 = s vyl b)) re Lol = 00 2l == L )

Here f is a two-dimensional vector function representing the right sides of the system of dif~
ferential equations solved for the highest derivatives, ....s are unknown alignment para-—
meters, », and r. denote the function » for 6<r«<¥, and ¥,<r<t , respectively. The
problems 1) and 2) were integrated by the Runge— Kutta method. The alignment parameters are
found by the Newton method from the adjoint conditions

re= 0.3, e <€t o (o s — 0P (o, s e <o E =00 L

The linear problems {(2.3)— (2.5) were solved analogously. The S. G. Godunov procsdure
for raising the accuracy of the computation /12/ was hence used to integrate the Cauchy prob-
lems of the type 1} and 2} for the systems (2.3}, (2.4). The gquantity of points at which the
Gram— Schmidt orthogonalization was performed was eight. Their coordinates ri(i= 1...8) were
determined automatically from the condition |Wa(r)lgeZ»m(m=103). In analyzing the problems
(2.3)— (2.5) a system of linearly-independent vectors was constructed and then the general sol=~
ution wag found from a linsar comhinarirm. The etann\mlup wag determined from the vanishing

of the appropriate determinant,

-’lc}. As r—0 ,the coefficients of the equations have a singularity, hence for * =10, ar
the solution of the problem {2.2)— {2.5) was replaced by a segment of a Taylor series. The
quantity &, varied between 0.11—0.27.

b grmen o gu i 09
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* () = 1.66.10% g (") and g** (r} = 3.33-10%¢g (r) for rigid and moving ¢
respectively, in Figs.l and 2. The numbers of the curves correspond to the number of the

Y
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eigenvalues. Curve ¢ in Fig.l corresponds to values of the paramet
§to A=14, p =078 (here and henceforth, A*=8/p). In Fig.2 n=4 % =11, p =034 »n =
8, A = 186, » =0.32; n =28, A== 19, p==030. It is seen that for the boundary conditions being

considered g (r) is an oscillating function for which the number of zeroes will be the greater,

the greater the A. For large A\ (see curves 6 and & in Fig.2, for example), the function g (r)
has a definite edge effect, in particular, the points of maximal and minimal values shift to

JUIPRL e SR SPSi- 1 emrnn ~ PRy
e

the support contour as A grows. Therefore, in the neighborhood of the eigenvalues of
problem (2.3), the spherical shell is guite responsive to the kind of perturbing prassure.
Two domains exist in a shell {this is the neighborhood of the points 4 and B for the merid-
ian being considered) at which the chapge in 1 {r) affects the buckling method especially strong-
ly. For thin shells the bhehavior of = {r) is essential primarily in the edge effect zone.

The dependence of the Kciter parameter b = 5-10* §; on A is shown inFig.3 for the prob=-

= . A b PR R Ty ~F RV

lem (2.3}, b} - {2.5),b). The numbers of the curves here correspond to the nunber of the
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eigenvalue n,n{r)=1%. It is seen that b is a negative continuous function of X for fixed
n . The function B{\.) is multivalued, and its branches are determined by selecting n. The
transition from one branch to ancther in the domain under investigation is possible only by
& jump whose minimal value diminishes as X grows. It follows from the results presented in
Fig.3 that shells with moving clamped support contour buckle by snapping when 7.6 < A< 24

}»

3

BTy H T H
g ; /x"*‘ |

g /1

D -

Fig.l ,
Fig.
'
2
'2 2 7 / "
J 4 3 )
8
-1.5 N
7 \"M
§ " ———t—
10 ' g
T 73 13 1% 1 »
Fig,3

The deflections a, = 10%, "W, (& = %, € = ¥/, & = %) are presented in Fig.4. The
clamping conditions and numerical value of n,A,p are the same here as in the example illust-
rated in Fig.2.

An assumption that the relationship |wy” | < |uy' | holds in the support contour zone of
width O (g {In pf) is used in a number of cases in an asymptotic analysis of the Marguerre—
Vliasov eguations. Its verification at some point of the edge effect zone, for instance at the
point (., shows that |uwgy |>]w/ | Therefore, the assumption noted can induce a signifi-
cant errcr into the asymptotic analysis of shells with a finite, albeit large 1 (A ~ 20

The eigenvalue distribution of the problem (2.3),a) is characterized by the dependence

n (p,) presented in Fig.5. The solid lines are the data of a numerical computation, and the
dashed line is the result of asymptotic integration of the spectral problem (see Sects.l and 2).
No constraint is imposed here in the asymptotic analysis on the quantity of waves in the cir-
cumferential direction /13/(*}. The curves marked with the numbers 7, 2, # correspond to the
values A = 12, 15, 18. It follows from the results presented in Fig.5 that rapidly and weakly
oscillating waves, described by two branches of the function n{p,} can appear on the shell.
Here the gquantity of waves corresponding to one branch grows with the rise in pressure and
that of the other branch decreases. Small nonaxisymmetric equilibrium modes are constructed
for each p, by the Liapunov—~Schmidt method. It turng out that if Pn is a simple eigen-
value, then two nonaxisymmetric equilibrium modes containing an identical number of modes in
the circumferential direction but with the points of their maximal normal displacements shift-
ed in the circumferential direction by the phase o .=n/n , branch off from the axisymmetric
mode. Investigations of the nonaxisymmetric modes for each point of the spectrum {r.} showed

*) Larchenko, V. V., Nonlinear stability and estimate of the efficienty of the asymptotic meth-
od in elastic spherical shells for different boundary conditions. Summary of Kandidat Disser-
tation, Reostov-on-Don, 1977.
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that for A< 22 the guantity of nonaxisymmetric solutions branching off which have a differ-
ent number of modss will grow nomnmonotonically as A increases, and is determined for large
* by the asymptotic formula

}\mr 20, N o~ {Lg:ﬂ?&}
where [.] is the integer part of the number. If A is fixed, and p is a multiple value and be-

longs to the beginning of the spectrum {p,}, then not more than two modes containing a dif-
ferent number of nonaxisymmetric modes branch off from the axisymmetric solution. Here if

5 £

g
2 : £
4 /
4
Ty e tomishen | eam 4,

Fig.4 Fig.S

p = miny, {pp}, then tha numbers of waves in the cireumferential divection that are referred
to the two different modes, differ by one. If the first eigenvalue is simple, and M is suf-
ficiently large, then the corresponding quantity of wawves can be obtained by an asymptotic
method. This confirms the comparison between numerical f13,14/ and asymptotic results. This
latter results in an asymptotic formula for the guantity of waves of the form

Ao, n~ [0.8080]

Cumparing the asymptotic results obtained with the results of the nonliineay theory in a
nonaxisymmetric formulation shows that for all A for which the nunaxisymmetric bifurcation
holds, the first critical pressure of the problem (2.3),a) is determined by an asymptotic mew
thod with less than 6% error.

et us hote that the difference betwesn px and pya at the beginning of the spectrum ig,
as a rule, considerably leas than the analogous guantity far from the first eigenvalue. This
is valid aisoc for the problem {2.3},b}.

Let us investigate the initial pogt~critical shell strain when =83 and 7.89. The
critical pressure determined experimentally in /S/ ig 0.915 for the former shell and 1.010 fer
the latteyr /3/. A numerical analysis of the spectrum {pa} resulted in the following: A = 8.3
pa = 0,918, py = Q.782, p, »= 0187, p;y == 0.790, py » 0.854, p, = 0.938, py = 1,015, po == 4,087; A = 7.89, p, = 0,867, p, =
.780, po = 0T84, p, = 0.812, py == 0.880, p. == 0.9V8, py = 1.058. It is seen that if 21=83 , then the
spectrium consists of eight points, and if X=7.3%, of seven peints. The least sigenvaluve
G.757 is achieved at a=4 for the first shell, and at »=3 for the sscond, vhere both these
values are less than the corresponding experimental cyitical pressures. Let us take into ac-
count that the perturbing pressure is nonuniform in the experiment. We approximate the func-
tional Jo in (2.11) as follows:

1
J§=Sg(r}r‘{i—&mithﬁ((mWr}hﬁ', M=10 £3.13
3

A muserical analysis showed that 4f s,=~1 and me= 6.3, then the bifurcation of the non-
axisymmetyic modes for thege shells ig agcomplished without snapping upon reaching the first
eigenvaluss since §,=J/J,; the shells can hence sustain a pressure exceeding m and pay
respectively. In these cases, the nonaxisymmetric modes are realized in experiment if they
are energatically suitable, For A= 983, the bifurcation is accompanied by snapping only for

r=19 and for A= 7.50 snapping ocours upon the solutions correspunding to the oritical preg-
sure of the goemetrically nonlinear thesry in an axisymwetric formulation reaching the bifurca-
rion point. If for A=83 and m=03 there is » monotenic decresse in g from 1022 —e {(here
>0 is a small scalar parameter) to (.633 —e, then snapping will occuxr sequentially for
ne 9,8 6,54,2,7,83, If a,=0721-g, then bifurcation is accompanied by snapping at the
first eigenvalue p, = 0.787, and no nonaxisymmetric modes are observed in the static state.
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An analogous analysis for 7.6< i< 20.7 showed that the Koiterparameters corresponding to the
rapidly oscillating waves, are as a rule more responsive to a change in e than the parameters
corresponding to slowly oscillating waves.

In a number of cases, axisymmetric equilibriummodes /6/ were observed in a precision ex-
periment. A comparative analysis of the numerical results and the data in /6/ showed that
the experimental values for the normal displacement agree gualitatively with the computation
results. Thus, for 6 =02 h=13 mm,a =15 mm, v = 0.4, and p = 079, the normal displacement w,
at the pole of the shell is 0.225 mm, and measured in the experiment is 0.21 mm. For points
at which the displacement takes on its maximum value, these quantities are 0.43 and 0.48 mm,
respectively,For 90 mm <« r,< 150 mm no discrepancy is detected between the computation and
the precision experiment results. For points at which an abrupt change in the shell deflec-
tion is observed, the experimental values of the displacement exceed the computed values by
~307,.

The strains ¢ and g, were compared for the same shell for p=094 . The measurement
results here lie ~15'. either above or below the computed data, depending on the coordinates
of the point under investigation.

Let us turn attention to an interesting fact detected in experiment /6/ and confirmed by
numerical analysis. A sufficiently thin shell with a rigidly clamped edge is stretched in
the circumferential direction in a small zone at the support contour.
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